Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 864
Filtrar
1.
Plant Direct ; 8(4): e585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651017

RESUMO

Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 µM), mannose (92 µM), galactose (145 µM), fructose (224 µM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.

2.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592828

RESUMO

Common bean (Phaseolus vulgaris L.) is the primary grain legume cultivated worldwide for direct human consumption due to the high nutritional value of its seeds and pods. The high protein content of common beans highlights it as the most promising source of plant-based protein for the food industry. Additionally, landraces of common bean have great variability in nutritional traits, which is necessary to increase the nutritional quality of elite varieties. Therefore, the main objective of this study was to nutritionally characterize 23 Chilean landraces and 5 commercial varieties of common bean to identify genotypes with high nutritional value that are promising for the food industry and for genetic improvement programs. The landrace Phv23 ('Palo') was the most outstanding with high concentrations of minerals such as P (7.53 g/kg), K (19.8 g/kg), Mg (2.43 g/kg), Zn (52.67 mg/kg), and Cu (13.67 mg/kg); essential amino acids (364.8 mg/g protein); and total proteins (30.35 g/100 g seed). Additionally, the landraces Phv9 ('Cimarrón'), Phv17 ('Juanita'), Phv3 ('Araucano'), Phv8 ('Cabrita/Señorita'), and Phv4 ('Arroz') had a high protein content. The landrace Phv24 ('Peumo') stood out for its phenolic compounds (TPC = 218.1 mg GA/100 g seed) and antioxidant activity (ORAC = 22,167.9 µmol eq trolox/100 g extract), but it has moderate to low mineral and protein concentrations. In general, the concentration of nutritional compounds in some Chilean landraces was significantly different from the commercial varieties, highlighting their high nutritional value and their potential use for the food industry and for genetic improvement purposes.

3.
Funct Integr Genomics ; 24(2): 47, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430379

RESUMO

Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis. In this study, we have conducted an exploration of the AAT gene family in P. vulgaris. In this research, we identified 84 AAT genes within the P. vulgaris genome sequence and categorized them into 12 subfamilies based on their similarity and phylogenetic relationships with AATs found in Arabidopsis and rice. Interestingly, these AAT genes were not evenly distributed across the chromosomes of P. vulgaris . Instead, there was an unusual concentration of these genes located toward the outer edges of chromosomal arms. Upon conducting motif analysis and gene structural analysis, we observed a consistent presence of similar motifs and an intron-exon distribution pattern among the subfamilies. When we analyzed the expression profiles of PvAAT genes, we noted tissue-specific expression patterns. Furthermore, our investigation into AAT gene expression under rhizobial and mycorrhizal symbiotic conditions revealed that certain genes exhibited high levels of expression. Specifically, ATLa5 and LHT2 was notably upregulated under both symbiotic conditions. These findings point towards a potential role of AATs in the context of rhizobial and mycorrhizal symbiosis in P. vulgaris, in addition to their well-established regulatory functions.


Assuntos
Arabidopsis , Phaseolus , Rhizobium , Simbiose/genética , Phaseolus/genética , Filogenia , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular
4.
Heliyon ; 10(5): e27330, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495171

RESUMO

The green bean pods of Phaseolus vulgaris L. are traditionally used as a folk remedy for treating calcium oxalate kidney stones. The current research aimed to develop a syrup formulation containing green bean pod extract for anti-urolithiatic activity. The syrup was prepared using a simple blending method and optimized through a central composite design (CCD) with two independent variables: the ratio of pod juice (PJ) to sugar solution (SS) ranging from 1:0.5 to 1:1.5, and the percentage of CMC from 0.2% to 0.4% w/v. These variables were analyzed for their impact on viscosity (CP) and sedimentation percentage, helping to identify the best formulation out of 13 variants. The finalized formulation (F-opt) underwent assessment for physicochemical characteristics such as organoleptic properties, viscosity, density, sedimentation rate, and stability. Additionally, a microbiological assessment was performed utilizing the spread plate method. Further, it was evaluated for in vitro, ex vivo, and in vivo anti-urolithiatic activity in rat models for 28 days and compared with that of the reference standard (Cystone syrup). Additionally, acute toxicity was assessed in albino Swiss mice. Histopathological evaluations were then conducted on the kidneys of the Wistar rats that had been used for the in vivo studies, providing insight into the treatment effects on kidney tissue structure. The optimized formulation (F-opt) was a green, viscous, clear syrup with a pH of 5.8, a viscosity of 256.38 CP, a density of 1.31 g/ml, and a sedimentation rate of 0.69%. The optimized formulation was found to be stable, showing no significant changes in physicochemical and microbiological properties. The results of the in vitro, ex vivo, and in vivo anti-urolithiatic studies indicated that the optimized formulation effectively inhibited the aggregation of calcium oxalate. The acute toxicity studies revealed no mortality or adverse effects for both the optimized formulation and pure bean pod juice at a dose of 2000 mg/kg body weight. Histopathological examination revealed that rats treated with the optimized formulation exhibited a significant reduction in both the number and size of calcium oxalate deposits within various parts of the renal tubules. It can be concluded that the syrupy formulation of Phaseolus vulgaris L. green bean pod extract demonstrated significant anti-urolithiatic activity. This activity could be due to its diuretic properties and its ability to inhibit the formation of calcium oxalate crystals. However, limitations of the study included a lack of elucidation of the mechanism and limited generalizability of the findings.

5.
Plants (Basel) ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38498547

RESUMO

Almond processing generates a high quantity of by-products, presenting the untapped potential for alternative applications and improved sustainability in production. This study aimed to evaluate whether the incorporation of almond by-products (hulls/shells) can improve the biochemical characteristics of green bean pods when used as an alternative to traditional growing media in green bean plants. Four substrates were prepared: the Control substrate (C): 70% peat + 30% perlite; substrate (AS): 70% peat + 30% shells; substrate (AH): 70% peat + 30% perlite + 1 cm hulls as mulch; substrate (MIX): 70% peat + 15% shells + 15% hulls. Plants were grown in each of these substrates and subjected to two irrigation levels, 100% and 50% of their water-holding capacity. Biochemical parameters (photosynthetic pigments, total phenolics, flavonoids, ortho-diphenols, soluble proteins, antioxidant capacity) and color were evaluated in the harvested pods. Results showed that pods from plants growing in AH substrate presented statistically significant higher values in their total phenolic content, while AS and MIX substrates did not reveal significant benefits. Summarily, this study highlights the potential of almond hulls as a promising medium for green bean cultivation, particularly when employed as mulch. Further research is recommended to gain a more comprehensive understanding of the application of almond by-products as natural fertilizers/mulch.

6.
J Appl Genet ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355922

RESUMO

Genetic information of bean seed traits can be an immense help to the breeder in selection of suitable genotypes and the appropriate breeding strategies. Therefore, the investigation aims to assess the genetic variability and to elucidate the genetic analysis of seed dietary fibre, carbohydrate, seed calcium and phosphorus contents of Phaseolus vulgaris in the high Guinean Savannah zone conditions. 5 × 5 half-diallel crosses of these traits were conducted in randomized complete block design with three replications. Results revealed high differences between five lines beans (p < 0.05), suggesting the sufficient genetic diversity for these traits. High broad sense heritability values were recorded for seed dietary fibre, carbohydrate and seed calcium content, attesting a strong implication of the genetic factors in the control of these traits; thereby, these traits can be improved through regular selection. The ratio GCA/SCA was greater than unity only for seed phosphorus content. It indicates the prevalence of additive gene effect in the involvement of the genetic control for this trait. The combining ability analysis revealed highly significant differences between parental GCA effects and F1 cross SCA effects. The PB, BI, CT and PR lines beans will prove useful in common bean breeding programmes as donor genotypes, in the development of bean genetic resources for betterment improvement of nutritional traits.

7.
Am Nat ; 203(2): 219-229, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306280

RESUMO

AbstractIn the early twentieth century, Wilhelm Johannsen's breeding experiments on pure lines of beans provided empirical support for his groundbreaking distinction between phenotype and genotype, the foundation stone of classical genetics. In contrast with the controversial history of the genotype concept, the notion of phenotype has remained essentially unrevised since then. The application of the Johannsenian concept of phenotype to modularly built, nonunitary plants, however, needs reexamination. In the first part of this article it is shown that Johannsen's appealing solution for dealing with the multiplicity of nonidentical organs produced by plant individuals (representing individual plant phenotypes by arithmetic means), which has persisted to this day, reflected his intellectual commitment to nineteenth-century typological thinking. Revisitation of Johannsen's results using current statistical tools upholds his major conclusion about the nature of heredity but at the same time falsifies two important ancillary conclusions of his experiments-namely, the alleged homogeneity of pure lines (genotypes) regarding seed weight variability and the lack of transgenerational effects of within-line (within-genotype) seed weight variation. The canonical notion of individual plant phenotypes as arithmetic means should therefore be superseded by a concept of phenotype as a dual property, consisting of central tendency and variability components of organ trait distribution. Phenotype duality offers a unifying framework applicable to all nonunitary organisms.


Assuntos
Plantas , Sementes , Humanos , Fenótipo , Genótipo
8.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337931

RESUMO

Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of Phaseolus vulgaris L. grown in clay-sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on Phaseolus vulgaris L. plants grown in saline soils.

9.
Front Genet ; 15: 1330361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380426

RESUMO

Dry bean is a nutrient-dense food targeted in biofortification programs to increase seed iron and zinc levels. The underlying assumption of breeding for higher mineral content is that enhanced iron and zinc levels will deliver health benefits to the consumers of these biofortified foods. This study characterized a diversity panel of 275 genotypes comprising the Yellow Bean Collection (YBC) for seed Fe and Zn concentration, Fe bioavailability (FeBio), and seed yield across 2 years in two field locations. The genetic architecture of each trait was elucidated via genome-wide association studies (GWAS) and the efficacy of genomic prediction (GP) was assessed. Moreover, 82 yellow breeding lines were evaluated for seed Fe and Zn concentrations as well as seed yield, serving as a prediction set for GP models. Large phenotypic variability was identified in all traits evaluated, and variations of up to 2.8 and 13.7-fold were observed for Fe concentration and FeBio, respectively. Prediction accuracies in the YBC ranged from a low of 0.12 for Fe concentration, to a high of 0.72 for FeBio, and an accuracy improvement of 0.03 was observed when a QTN, identified through GWAS, was used as a fixed effect for FeBio. This study provides evidence of the lack of correlation between FeBio estimated in vitro and Fe concentration and highlights the potential of GP in accurately predicting FeBio in yellow beans, offering a cost-effective alternative to the traditional assessment of using Caco2 cell methodologies.

10.
Food Sci Nutr ; 12(2): 997-1005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370037

RESUMO

The lifelong gluten-free diet of celiac patients and gluten-intolerant people prevents their balanced diet mainly due to starch-rich products. The aim of this study is to determine optimum gluten-free cake formulation having kidney bean (Phaseolus vulgaris L.) pod powder as fat replacer of up to 50% and rice flour replacer of up to 30% using multifactorial optimization approach. Central composite design was used to determine optimum formulation. The use of kidney beans in gluten-free cake increased moisture, hardness, chewiness, L*, a*, b*, antioxidant activity, total phenolic content, and sensory evaluation scores (p < .05). The optimum gluten-free cake is rich in protein (5.89%), phenolic compounds (0.51 mg GAE/g), antioxidant activity (1.93 µmol TE/g), and total dietary fiber (4.43%) with improved sensory properties. The optimum gluten-free cake formulation prepared with kidney bean pod powder of 27.88% fat and 13.52% rice flour replacer provides higher specific volume, springiness, total phenolic content, antioxidant activity, and sensory analysis scores, and lower hardness and chewiness conditions. Gluten-free cake containing kidney bean pod powder as fat and rice flour replacer at optimum ratio is a new healthier alternative with reduced fat content and improved nutritional and sensory properties for celiac patients and gluten-intolerant people.

11.
Heliyon ; 10(1): e23030, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169743

RESUMO

Sclerotinia sclerotiorum, is a highly destructive pathogen with widespread impact on common bean (Phasaeolus vulgaris L.) worldwide. In this work, we investigated the efficacy of microbial consortia in bolstering host defense against sclerotinia rot. Specifically, we evaluated the performance of a microbial consortia comprising of Trichoderma erinaceum (T51) and Trichoderma viride (T52) (referred to as the T4 treatment) in terms of biochemical parameters, alleviation of the ROS induced cellular toxicity, membrane integrity (measured as MDA content), nutrient profiling, and the host defense-related antioxidative enzyme activities. Our findings demonstrate a notable enhancement in thiamine content, exhibiting 1.887 and 1.513-fold higher in the T4 compared to the un-inoculated control and the T1 treatment (only S. sclerotiorum treated). Similarly, the total proline content exhibited 3.46 and 1.24-fold higher and the total phenol content was 4.083 and 2.625-fold higher in the T4 compared to the un-inoculated control and the T1 treatment, respectively. Likewise, a general trend was found for other antioxidative and non-oxidative enzyme activities. However, results found were approximately similar in T2 treatment (bioprimed with T51) or T3 treatments (bioprimed with T52). Further, host defense attribute (survival rate) under the pathogen challenged condition was maximum in the T4 (15.55 % disease incidence) compared to others. Therefore, bio priming with consortia could be useful in reducing the economic losses incited by S. sclerotiorum in common beans.

12.
Discov Nano ; 19(1): 8, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175418

RESUMO

This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds. Seeds treated with the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive agent as advised by its unique distribution pattern and effect on amino acid metabolism.

13.
Plants (Basel) ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256780

RESUMO

The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than 32 metabolites from various classes, i.e., carbohydrates, amino acids, organic acids, nucleosides, alkaloids, and fatty acids. PVEL, PCON, and PCANN varieties displayed similar chemical profiles, albeit with somewhat different quantitative results. The PON metabolite composition was slightly different from the others; it lacked GABA and pipecolic acid, featured a higher percentage of malic acid than the other samples, and showed quantitative variations of several metabolites. The lipophilic extracts from all four cultivars demonstrated the presence of omega-3 and omega-6 unsaturated fatty acids. After the determination of the total phenolic, flavonoids, and condensed tannins content, in vitro antioxidant activity was then assessed using the DPPH scavenging activity, the ABTS scavenging assay, and ferric-reducing antioxidant power (FRAP). Compared to non-dark seeds (PCON, PCANN), brown seeds (PVEL, PON) featured a higher antioxidant capacity. Lastly, only PON extract showed in vitro antifungal activity against the sclerotia growth of S. rolfsii, by inhibiting halo growth by 75%.

14.
Insects ; 15(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276822

RESUMO

Tetranychus urticae is a highly polyphagous and global pest. Spider mites primarily feed on the underside of leaves, resulting in decreased photosynthesis, nutritional loss, and the development of chlorotic patches. We investigated the life tables of the two-spotted spider mite T. urticae on fungal endophyte Beauveria bassiana colonized and untreated plants of the common Phaseolus vulgaris L., a bean plant. Based on the age-stage, two-sex life table theory, data were evaluated. The mites raised on untreated plants had protonymphs, deutonymphs, and total pre-adult stage durations that were considerably shorter (1.76, 2.14, and 9.77 d, respectively) than the mites raised on plants that had been colonized (2.02, 2.45, and 10.49 d, respectively). The fecundity (F) varied from 28.01 eggs per female of colonized plants to 57.67 eggs per female of endophyte-untreated plants. The net reproductive rate (R0) in the plants with and without endophytes was 19.26 and 42.53 brood, respectively. The untreated plants had an intrinsic rate of increase (rm) of 0.245 days as opposed to the colonized plants, which had an r of 0.196 days and a finite rate of increase (λ) (1.27 and 1.21, respectively). Population forecasts based on a two-sex, age-stage life table demonstrated the dynamism and variability of the stage structure. Furthermore, the colonization of B. bassiana had a negative impact on the growth and development of T. urticae. It lowered the adult mite life span, female fecundity, net reproduction rate, and intrinsic growth rate. We propose that future research should better use entomopathogenic fungal endophytes to understand host plant resistance strategies in integrated pest management.

15.
J Food Sci ; 89(1): 671-683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983860

RESUMO

In this study, we investigated the biological profile of lectins isolated from raw and boiled Japanese red Kintoki beans (red kidney beans [RKB]; Phaseolus vulgaris). Lectins in beans showing agglutination activity were retained after heating. Raw and boiled RKB lectins were fractionated using carboxymethyl- and diethylaminoethyl-Sepharose, respectively. Boiled RKB lectins were evaluated for carbohydrate specificity as well as cytokine-inducing and antiproliferative activities against cancer cells and compared with raw RKB lectins. Raw RKB lectins showed specificity for thyroglobulin and fetuin, whereas boiled lectins showed specificity for N-acetylneuraminic acid. Raw RKB lectins showed low resistance to proteases and tolerated temperatures greater than 80°C for 5 min. Notably, lectins from raw and boiled beans showed antiproliferative activity against five types of cancer cells B16, LM8, HeLa, HepG2, and Colo 679. In particular, lectins from raw beans exhibited a significantly stronger activity than those from boiled beans. Anti-inflammatory effects were notably observed in crude extracts from raw and boiled beans. Specifically, lectins fractionated from boiled beans markedly inhibited the expression of tumor necrosis factor-α and interleukin-6. Overall, our results showed that RKB lectins from boiled beans exert anti-inflammatory and anticancer effects and could be developed as potential chemopreventive agents. PRACTICAL APPLICATION: Japanese red kidney beans (RKB) are cultivated in numerous parts of the temperate zone and consumed in many countries. Lectins from boiled beans exhibited anticancer activity, similar to lectins from raw beans. Additionally, crude and fractionated lectins from boiled beans showed anti-inflammatory activity. Thus, boiled RKB lectins have the potential to be used as a bioactive protein for medical research and could be developed as anticancer agents.


Assuntos
Lectinas , Phaseolus , Lectinas/farmacologia , Verduras , Endopeptidases
16.
Plant Dis ; 108(2): 407-415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578366

RESUMO

Ashy stem blight (ASB) caused by Macrophomina phaseolina (Tassi) Goidanich affects the common bean (Phaseolus vulgaris L.) at all growing stages. Higher levels of resistance were observed in Andean common beans, but specific resistant quantitative trait loci (QTLs) conferring resistance to this pathogen have not been reported in this gene pool. The objectives of this research were to: (i) conduct a genome-wide association study (GWAS) and QTL mapping for resistance in the Andean breeding line PRA154; and (ii) identify single nucleotide polymorphism (SNP) markers and candidate genes for ASB resistance. Phenotyping was conducted under greenhouse conditions by inoculating the 107 F6:7 recombinant inbred lines (RILs) derived from the cross between the susceptible cultivar 'Verano' and the partial-resistant breeding line PRA154 twice with the M. phaseolina isolate PRI21. Genotyping was performed with 109,040 SNPs distributed across all 11 P. vulgaris chromosomes. A novel major QTL was located between 28,761,668 and 31,263,845 bp, extending 2.5 Mbp on chromosome Pv07, and the highest significant SNP markers were Chr07_28761668_A_G, Chr07_29131720_G_A, and Chr07_31263845_C_T with the highest LOD (more than 10 in most of the cases) and R-squared values, explaining 40% of the phenotypic variance of the PRI21 isolate. The gene Phvul.007G173900 (methylcrotonyl-CoA carboxylase alpha chain and mitochondrial 3-methylcrotonyl-CoA carboxylase 1 [MCCA]) with a size of 10,891 bp, located between 29,131,591 and 29,142,481 bp on Pv07, was identified as one candidate for ASB resistance in PRA154, and it contained Chr07_29131720_G_A. The QTL and genetic marker information could be used to assist common bean breeders to develop germplasm and cultivars with ASB resistance through molecular breeding.


Assuntos
Phaseolus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Melhoramento Vegetal , Mapeamento Cromossômico
17.
J Exp Bot ; 75(1): 364-390, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712879

RESUMO

The mechanisms underlying susceptibility to and defense against Pseudomonas syringae (Pph) of the common bean (Phaseolus vulgaris) have not yet been clarified. To investigate these, 15-day-old plants of the variety Riñón were infected with Pph and the transcriptomic changes at 2 h and 9 h post-infection were analysed. RNA-seq analysis showed an up-regulation of genes involved in defense/signaling at 2 h, most of them being down-regulated at 9 h, suggesting that Pph inhibits the transcriptomic reprogramming of the plant. This trend was also observed in the modulation of 101 cell wall-related genes. Cell wall composition changes at early stages of Pph infection were associated with homogalacturonan methylation and the formation of egg boxes. Among the cell wall genes modulated, a pectin methylesterase inhibitor 3 (PvPMEI3) gene, closely related to AtPMEI3, was detected. PvPMEI3 protein was located in the apoplast and its pectin methylesterase inhibitory activity was demonstrated. PvPMEI3 seems to be a good candidate to play a key role in Pph infection, which was supported by analysis of an Arabidopsis pmei3 mutant, which showed susceptibility to Pph, in contrast to resistant Arabidopsis Col-0 plants. These results indicate a key role of the degree of pectin methylesterification in host resistance to Pph during the first steps of the attack.


Assuntos
Arabidopsis , Phaseolus , Arabidopsis/genética , Arabidopsis/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Pseudomonas syringae/fisiologia , Pectinas/metabolismo , Parede Celular/metabolismo
18.
Plant Dis ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054925

RESUMO

The common bean (Phaseolus vulgaris; family: Fabaceae) is an economically and nutritionally important food crop worldwide (Ganesan et al. 2017). In 2021, several plants collected from different provinces in South Korea had symptoms of viral infections (e.g., mild yellow-greenish speckling, stunting, crinkling, and deformed leaves). To identify the causal pathogens, total RNA was isolated from pooled leaf tissues from all samples (n = 29) for paired-end high-throughput sequencing (HTS). The cDNA library was constructed after eliminating ribosomal RNA using the TruSeq RNA Sample Prep Kit and then sequenced using the Illumina NovaSeq 6000 platform (Macrogen, Korea). The 297,868,156 paired-end clean reads (150 nt) were de novo assembled using Trinity with default parameters. BLASTx was used for the contig analysis, which revealed the pooled samples were infected with several plant viruses (e.g., turnip mosaic virus, zucchini yellow mosaic virus, cucumber mosaic virus, lily mottle virus). Notably, the assembled contigs included a single viral contig (8,472 nt) comprising the nearly complete KLV genome (HTS mean coverage: 39.46%). Kalanchoe latent virus (KLV; genus: Carlavirus; family: Betaflexiviridae) has been detected in Kalanchoë blossfeldiana (Hearon 1982), Chenopodium quinoa (Dinesen et al. 2009), and Graptopetalum paraguayense (Sorrentino et al. 2017). The sequence was most similar (96.28% nucleotide identity; 99% query coverage) to KLV isolate DSMZ PV-0290 (GenBank: OP525283) from Denmark. The contig sequence was validated via reverse transcription-polymerase chain reaction (RT-PCR) using total RNA extracted from the 29 individually stored samples and nine primer sets specific for the KLV contig. All nine contig-specific overlapping fragments were amplified from only a P. vulgaris plant with mild yellowing mosaic symptoms collected on July 6, 2021, in Jeongseon County, South Korea. Additionally, 5' and 3' rapid amplification of cDNA ends (RACE)-specific primers were designed for the KLV contig sequence to determine the terminal ends of the genome of the South Korean KLV isolate using the 5'/3' RACE System (Invitrogen, Carlsbad, CA, USA). All of the amplified and overlapping fragments were cloned into the RBC T&A Cloning Vector (RBC Bioscience, Taipei, Taiwan) and sequenced using the Sanger method. The obtained full-length genomic sequence of the KLV isolate (KLV-SK22) was 8,517 nt long and was deposited in GenBank OQ718816. According to the BLASTn analysis, KLV-SK22 was highly similar (96.30% sequence identity; 100% query coverage) to the DSMZ PV-0290 isolate. Phylogenetic trees constructed on the basis of coat protein and RNA-dependent RNA polymerase amino acid sequences revealed that KLV-SK22 is closely related to the DSMZ PV-0290 and PV-0290B isolates from Denmark, respectively. At the genome and gene levels, the individual sequence identities between the carlaviruses and other KLV isolates were 96.29% to 100% (Adams et al. 2004). Additionally, an RT-PCR analysis using detection primers specific for KLV-SK22 did not detect KLV in 15 samples (P. vulgaris = 3, Glycine max = 8, Pueraria montana = 2, Trifolium repens = 1, and Vigna angularis = 1) randomly collected from different regions in South Korea. Based on these results, KLV infection may not be widespread at this time in South Korea. To the best of our knowledge, this is the first report of KLV in P. vulgaris in South Korea or elsewhere. Our findings will aid future research on the epidemiology and long-term management of KLV-related diseases.

19.
BMC Plant Biol ; 23(1): 610, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041043

RESUMO

Common bean (Phaseolus vulgaris) is one of the legume crops most consumed worldwide and bean rust is one of the most severe foliar biotrophic fungal diseases impacting its production. In this work, we searched for new sources of rust resistance (Uromyces appendiculatus) in a representative collection of the Portuguese germplasm, known to have accessions with an admixed genetic background between Mesoamerican and Andean gene pools. We identified six accessions with incomplete hypersensitive resistance and 20 partially resistant accessions of Andean, Mesoamerican, and admixed origin. We detected 11 disease severity-associated single-nucleotide polymorphisms (SNPs) using a genome-wide association approach. Six of the associations were related to partial (incomplete non-hypersensitive) resistance and five to incomplete hypersensitive resistance, and the proportion of variance explained by each association varied from 4.7 to 25.2%. Bean rust severity values ranged from 0.2 to 49.1% and all the infection types were identified, reflecting the diversity of resistance mechanisms deployed by the Portuguese germplasm.The associations with U. appendiculatus partial resistance were located in chromosome Pv08, and with incomplete hypersensitive resistance in chromosomes Pv06, Pv07, and Pv08, suggesting an oligogenic inheritance of both types of resistance. A resolution to the gene level was achieved for eight of the associations. The candidate genes proposed included several resistance-associated enzymes, namely ß-amylase 7, acyl-CoA thioesterase, protein kinase, and aspartyl protease. Both SNPs and candidate genes here identified constitute promising genomics targets to develop functional molecular tools to support bean rust resistance precision breeding.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/microbiologia , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica
20.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138473

RESUMO

Liver enzymes alterations (activity or quantity increase) have been recognized as biomarkers of obesity-related abnormal liver function. The intake of healthy foods can improve the activity of enzymes like aspartate and alanine aminotransferases (AST, ALT), γ-glutaminyl transferase (GGT), and alkaline phosphatase (ALP). Beans have a high concentration of several phytochemicals; however, Restriction Irrigation (RI) during plant development amends their synthesis. Using chemometric tools, we evaluated the capacity of RI-induced phytochemicals to ameliorate the high activity of liver enzymes in obese rats. The rats were induced with a high-fat diet for 4 months, subsequently fed with 20% cooked beans from well-watered plants (100/100), or from plants subjected to RI at the vegetative or reproduction stage (50/100, 100/50), or during the whole cycle (50/50) for 3 months. A partial least square discriminant analysis indicated that mostly flavonols have a significant association with serum AST and ALT activity, while isoflavones lowered GGT and ALP. For AST and ALT activity in the liver, saponins remained significant for hepatocellular protection and flavonoids remained significant as hepatobiliary protectants by lowering GGT and ALP. A principal component analysis demonstrated that several flavonoids differentiated 100/50 treatment from the rest, while some saponins were correlated to 50/100 and 50/50 treatments. The intake of beans cultivated under RI improves obesity-impaired liver alterations.


Assuntos
Phaseolus , Saponinas , Ratos , Animais , Quimiometria , Aspartato Aminotransferases , Obesidade/tratamento farmacológico , Fígado , Fosfatase Alcalina , Alanina Transaminase , Sementes , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...